
Overlay techniques in the underlay

1st Conference Seminar
Massively Distributed Systems

Winter Term 2006/2007

Elmar Hoffmann
RWTH Aachen University

elho@elho.net

ABSTRACT
Traditional routing algorithms as used today in the Internet
rely on a hierarchical structure of the network to be able
to scale reasonably. Similarly, routing algorithms in wire-
less mesh networks that do not rely on a location-imposed
hierarchy do not scale well. Routing algorithms as used in
overlay networks for Distributed Hash Tables (DHTs), how-
ever, have shown good scalability.

This paper describes two novel approaches that take these
overlay network routing algorithms and techniques and ap-
ply them to the routing in the underlying network. Namely
Virtual Ring Routing [3], aimed at providing scalable mesh
routing offering good performance, and Routing on Flat La-
bels [4], aimed at demonstrating that the use of routing
schemes on the Internet, that do not rely on a hierarchical
structure, could be feasible.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols—Routing protocols; C.2.6 [Computer-Commu-
nication Networks]: Internetworking; C.2.1 [Computer-
Communication Networks]: Network Architecture and
Design

General Terms
Algorithms, Design

Keywords
Routing, naming, Internet architecture, Distributed Hash
Tables

1. INTRODUCTION
The scalability of the underlying routing used in a network
is an important factor limiting the size of the network. This
is a predominant problem in mesh routing protocols used

in wireless ad hoc networks [1], where every node also is a
router and thus — in practice — scaling issues show up with
relatively small numbers of nodes. It also affects the inter-
domain routing in the core of the Internet, where routers
do not have a default route, but routes to every reachable
network in their routing table. This core is therefore also
called the default-free zone (DFZ).

It is — besides the available address space — one of the
factors that limit the future growth of the current Internet.
This is especially of concern due to the rate of advance-
ment in the development of the highly specialised hardware
components used in the forwarding engines of high-speed
routers. Unlike that of mass produced components, which
follows Moore’s Law [5], it is considerably lower.

In the early days of the Internet, routing table size showed
characteristics of exponential growth. In order to counter
this trend, Classless Inter-Domain Routing (CIDR) was de-
veloped, which introduced a hierarchy into inter-domain rout-
ing. These hierarchy levels, following the underlying hierar-
chical provider-subscriber topology, allowed for aggregation
of routes and thus — at first — limiting the growth rate of
the number of routes announced in the DFZ [10, 6, 11].

Since then, hierarchical structure and better aggregation
were the main approach to fight the scalability problem of
excessive routing table growth. As such, IPv6 address al-
location was designed to be strictly hierarchical, provider-
assigned (PA) only [9, 8].

However, various factors worked against the CIDR aggrega-
tion efforts, again making the routing table size grow at a
faster rate. Increasing economic interest in the Internet led
to an accelerated growth of it overall as well as to increasing
demand for multi-homing and traffic engineering. The lat-
ter two result in de-aggregation by announcing more specific
routes into the DFZ. Another reason for this to happen is
the practice of re-homing without renumbering [10].

Except of the latter, these problems will likewise affect IPv6.
The much larger available address space removes the ma-
jor limiting factor of overall growth of the (IPv4) Internet
and allows for use of globally routable addresses in new ar-
eas, such as cell phones and other mobile devices. The de-
mand for multi-homing and traffic engineering remains and



0

20E

2A3

6D5
7E2

8E2

8F0

8F6

90E

910

A01

A3C

F01
FC1

0 20E 2A3

6D5

7E28E28F08F6
90E

910

A01

A3C

F01
FC1

8F6FC1

7E2

A3C

90E

F01

6D5

8E2

910

A01

20E 2A3

8F0

Figure 1: The virtual ring and its relationship to the physical network topology.

thus there has been a shift to allow assignment of provider-
independent (PI) address space recently. This of course con-
tradicts the original design of strictly hierarchical address
allocation and hampers aggregation, so that the problem of
routing scalability remains [5].

In contrast to this, Distributed Hash Tables (DHTs) have
demonstrated scalability with a large number of (routing)
nodes. Up to now, DHTs were used in overlay networks
that rely on an underlying network, also called an under-
lay network. The two routing algorithms described in the
following, however, use DHT algorithms directly on the un-
derlay network.

Another fundamental problem of the current Internet ar-
chitecture is that the IP address of a node comprises both
identity and location information [13]. This is the reason be-
hind the problems faced with multi-homing and re-homing
— the location of nodes changes, but their identities should
remain the same. Using IP addresses, however, only one of
these contraints can be fulfilled. Location independent iden-
tifiers solve this conflict and furthermore allow for mobility
of nodes without requiring any indirection layers.

This paper will first describe Virtual Ring Routing [3] in
Section 2, designed for efficient and scalable mesh routing
in ad-hoc networks, and then describe Routing on Flat La-
bels [4] in Section 3, designed for use in the Internet, among
others borrowing ideas from Chord [14], Canon [7] and Vir-
tual Ring Routing.

2. VIRTUAL RING ROUTING

2.1 Overview

Virtual Ring Routing (VRR) uses unique, location indepen-
dent node identifiers. Each node gets a random unsigned
integer as identifier. The size of this identifier can be chosen
depending on the application, e. g. it could be 32-bit or 128-
bit to provide compatibility with IPv4 or IPv6 addresses
respectively or it could be 160-bit and based on a SHA-1
hash value.

Nodes are logically organised into a virtual ring, ordered by
their identifier. A node connects to its r/2 closest neigh-
bours both clockwise and counter-clockwise. The resulting
set of r closest neighbours a node is connected to is called
the virtual neighbour set, short vset. A typical vset size is
r = 4.

Figure 1 on the left shows an example virtual ring using this
vset size and 12-bit identifiers as well as the vset of node
8F6. On the right it is demonstrated that the members of a
vset are randomly distributed across the physical topology
of the network. This is due to the identifiers being randomly
assigned, as mentioned above.

Besides the vset, a node also maintains a set of closest neigh-
bours in the physical network topology, called the physical
neighbour set, short pset.

2.2 Routing
Routing in VRR provides a DHT, that is, lacking an ex-
plicit route to the destination, messages are routed to the
node that has the identifier numerically closest to that of
the destination node.

Each node maintains routing paths (routes) to all other
nodes in its vset, called vset-paths. As each node is in the



vset of each of the nodes in its vset, vset-paths are bidirec-
tional. In Figure 1 the vset-paths of node 8F6 are visualised
by spirals.

The vset-path is stored in the routing table of every node
along that vset-path. That means, that besides its own vset-
paths, the routing table of a node also contains all vset-paths
that are routed through it.

Furthermore, the routing table contains physical neighbour
paths to all the nodes in its pset. In addition to these directly
reachable neighbours, as an optimisation, physical neigh-
bour paths to its two-hop neighbours, i. e. the neighbours of
its neighbours, are also stored in the routing table of a node.
How these two-hop physical neighbour paths are populated,
will be described later in Section 2.3.

Each entry in the routing table contains the identifiers of
both endpoints of the path, endpointA and endpointB , the
identifiers of the neighbour which is the next hop towards
each endpoint, nextA and nextB , the identifier of the two-
hop neighbour which is the second hop towards endpointA,
nextnextA and finally a vset-path identifier, path id.

EndpointA is the originating endpoint of the vset-path, i. e.
the node that initiated the vset-path. The identifier in the
next hop entries nextA and nextB obviously have to be
members of the pset of the node. The two-hop neighbour
nextnextA is used for local path repair, as described later in
Section 2.5.

The path identifier is an 8-bit unsigned integer value. For
vset-paths it is unique per originating endpoint. Thus the tu-
ple 〈path id,endpointA〉 identifies a vset-path globally unique.
Physical neighbour paths always use the highest possible
path identifier value, i. e. FF. The reason for this is, that
the path identifier is used to select among multiple routes
to the same destination, choosing the one with the highest
path identifier. Using the highest possible value therefore
ensures that routes to directly reachable physical neighbours
are always preferred.

end- end- nextA nextB next- path
pointA pointB nextA id
8F6 8F0 NULL 20E NULL 03
8F6 8E2 NULL F01 NULL 2F
90E 8F6 7E2 NULL A3C 1E
910 8F6 F01 NULL 6D5 2F
35F 37A 20E 7E2 2A3 12
A01 A10 F01 FC1 6D5 F0
8F6 20E NULL 20E NULL FF
8F6 F01 NULL F01 NULL FF
8F6 7E2 NULL 7E2 NULL FF
8F6 FC1 NULL FC1 NULL FF

Figure 2: A sample routing table

Figure 2 shows part of the routing table for node 8F6 from
previous examples. The first four entries consist of the vset-
paths between 8F6 and the members of its vset. For the
first two entries, 8F6 is the originating node of the vset-path,
endpointA. As it is endpointA itself, logically, the next hop

identifiers towards that endpoint, nextA and nextnextA, are
set to NULL.

The fifth and sixth entries are vset-paths that are routed
through 8F6. The last four entries are the physical neigh-
bour paths from 8F6 to the members of its pset.

The forwarding decision in VRR works as follows: VRR
chooses the endpoint with the numerically closest identifier
to that of the destination. If that endpoint is the node it-
self, the message is delivered locally, otherwise the message
is forwarded to the next hop towards the selected endpoint,
as indicated by the routing table entry. If there are multiple
alternative routes to the destination, VRR, as aforemen-
tioned, selects the one with the highest path identifier.

2.3 Physical neighbours
To detect link failures quickly, nodes broadcast hello mes-
sages to their physical neighbours in a regular interval of Th

seconds. A typical value for that interval is Th = 1 second.

A node maintains a set of those nodes, that it received a
hello message from during the last 2kTh seconds, with a
typical value of k = 4.

A physical neighbour of a node can be in one of four states.
A node not in the aforementioned set is in the unknown
state. A neighbour that is in the set, i. e. from which hello
messages were received, and that also received hello mes-
sages from the node, is in the linked state. The set of neigh-
bours in the linked state is what forms the pset of the node.
If the node does not know whether a neighbour, from which
hello messages were received, also received hello messages
from the node, that neighbour is in the pending state. If a
link to a neighbour is marked as faulty, that neighbour is in
the failed state.

To facilitate classification of the neighbours into these states,
a node sends within each hello message the set of linked
active nodes, the set of linked non-active nodes and the set of
pending nodes. When a node sees itself in one of these sets,
it knows that the neighbour has received its hello messages.
Upon reception of a hello message from a neighbour, a node
updates the state of the neighbour based on the neighbours
old state and its own presence in the sets sent within the
hello message. It can be represented as three states, missing
if the node is not present in any of the sets, pending if it is
in the set of pending nodes and linked if it is in either of the
sets of linked nodes.

This leads to the state transitions illustrated in Figure 3,
where nodes of the graph represent the state the neighbour is
in and the edges represent the state of the node, as indicated
by the neighbour’s hello message.

When a node did not receive a hello message from a neigh-
bour during the last kTh seconds, it marks that neighbour
as failed. If no hello message is received for another kTh sec-
onds, the neighbour enters the unknown state and is purged
from the set of nodes that sent a hello message. This re-
sults in the aforementioned period of 2kTh seconds, that a
neighbour is remembered in that set.



unknown pending

linkedfailed

missing

pending

li
n
k
ed

lin
k
ed

o
r

p
en

d
in

g

missing

pe
nd

in
g

or
m
iss

in
g

missing

linked or pendinglinked

Figure 3: State transitions of physical neighbours.

Furthermore, information from received hello messages is
used to update the routing table. When a neighbour is in
the linked state and marked as active in its hello message,
it belongs to the pset of the node and a routing table entry
with this physical neighbour path is added, if not present.

From the set of linked active neighbours of the neighbour, a
node is able to deduce the two-hop physical neighbour paths
that are also added to the routing table.

2.4 Node join
A node joining the network first sets up its pset using hello
messages as described in Section 2.3.

It then uses one of the active nodes in its pset as a proxy to
setup its vset-paths. It first locates one member of its vset.
This works by sending a setup req message via the proxy
to its own identifier. Due to the DHT nature of VRR, this
message gets routed to a node whose identifier is numerically
closest to that of the joining node, which of course is a node
that belongs into the joining node’s vset.

When the setup req message reaches its destination, that
node adds the joining node to its vset and, if that succeeds,
answers with a setup message, else with a setup fail message.
Failure can happen due to concurrent joins, where a joining
node is farther away from the node than other new node(s)
that just joined, and the joining node thus happens to be
outside of the vset.

The setup and setup fail messages are sent back to the join-
ing node via the proxy. If they, however, pass another phys-
ical neighbour of the joining node before the proxy, that
neighbour will take the shortcut and route the message di-
rectly to the joining node. This is important, as each node
the setup message passes through adds an entry for the vset-
path originating from the joining node to the node sending
the setup message to its routing table. This way the setup
message sets up the vset-path and above mentioned shortcut

ensures that the path goes via the closest neighbour instead
of via the proxy.

Both, the setup and setup fail messages also contain the
vset of the sending node. The joining and, in case of the
setup message, all nodes along the newly setup vset-path
learn other potential vset members from this. Whenever a
node learns about a node that belongs in its vset, but is
not in it yet, it sends a setup req message to it. As the
first setup req message was sent to the node whose identifier
is closest to that of the joining node, the vset contained
in the setup message sent back from that node contains all
other vset members of the joining node, i. e. — assuming
no concurrent joins that affect its vset — the joining node
learns all the information it needs to complete the join from
the first setup message received.

Setup of the vset-path may fail at any node among the path,
the setup message is routed through, as aforementioned due
to concurrent joins, as well as due to other failures that cause
setup messages from nodes that are not in the pset or for
already existing vset-paths to be received. As the vset-path
is already partly setup at this point, it has to be destroyed
— or torn down — to maintain consistent routing state. The
procedure to facilitate this is called teardown and works by
the node initiating it — in this case the node at which the
vset-path failed — sending a teardown message towards the
source of the setup message.

A node that receives a teardown message for a given vset-
path removes that vset-path from its routing table. If it is
the endpoint itself, it also removes the other endpoint from
its vset and sends a setup req message to that endpoint, else
it passes it on to the next hop.

Teardown is also initiated for each vset-path to a node, when-
ever that node is removed from the vset due to another node
with a numerically closer identifier joining the vset. As the
teardown message — like the setup and setup fail messages
— also contains the vset of the sending node, the removed
node learns about the joined node and can also update its
vset accordingly.

After successful setup of vset-paths to all members of its vset,
a node has successfully joined the virtual ring and becomes
active.

The setup message also contains a prev field in which the
identifier of the previous hop it was sent through is recorded.
This is used to fill the nextnextA item of the routing table
entries.

A node that cannot find any active neighbours after a time-
out, i. e. that ends up with an empty pset, creates its own
virtual ring. Once a node which is member of another vir-
tual ring comes into range, the two rings will be joined using
the mechanism described in Section 2.5.1.

2.5 Failure detection and repair
VRR uses acknowledgements and retransmissions for all mes-
sages except hello ones on a per-hop basis. These are used
in addition to failures to receive hello messages, as described
in Section 2.3, to detect link failure and mark a neighbour



as failed.

The physical neighbour states and the transitions between
them, as described in Section 2.3, ensure that failure detec-
tion of physical neighbours is symmetric, i. e. both nodes
will detect that the link between them failed within a rela-
tively short time.

To also assure symmetric failure detection for vset-paths, a
node that marks its neighbour as failed also tears down any
vset-paths found in its routing table that have the failed
neighbour as next hop. Due to the symmetric failure detec-
tion of physical neighbours this happens on both ends of the
broken vset-path thus making the vset-path failure detection
symmetric, too.

If, during teardown, any node on the path fails to acknowl-
edge a teardown message after several retransmissions, it is
marked as failed, consequently triggering further teardown
messages for all paths routed through it. This assures con-
sistent routing state even when complex failures occur.

Whenever a vset-path is torn down, the endpoint receiv-
ing the teardown message sends a setup req message to the
other endpoint of the vset-path (cf. Section 2.4). Besides
repairing the vset-path to that node after a failure of one
of the intermediate nodes, this also repairs failure of that
other endpoint itself. This is so due to the DHT nature of
VRR — if the other endpoint is dead, the setup req message
will be delivered to another node whose identifier is numer-
ically closest to that of the dead node. This node is either
a suitable replacement vset member or it already is a vset
member. In the latter case it almost always has a suitable
replacement vset member in its vset, which it sends along
with its setup fail message. In the rare case that it does not,
the original node repeats the join process until successful.

Besides this global vset-path repair that involves the tear-
down of the whole vset-path, VRR also has a much cheaper
— constant cost — local repair mechanism. Local repair
works by replacing a failed link to some node with an avail-
able alternative route to that node. This only affects and
involves the nodes between which the link failed, it is thus
local.

The strategy for local repair works as follows: First, the
node detecting a link failure looks up every vset-path which
has the failed node as its nextA. For each of these vset-
paths it then first checks whether its endpointA is a physical
neighbour, if so it changes the entry to directly point to that
endpoint, thus not only repairing, but also shortening the
vset-path. Secondly, it makes use of the nextnextA item of
the entry (cf. Section 2.2), if that node is a physical neigh-
bour it likewise changes the entry to use that node as nextA,
again both repairing and shortening the vset-path. Failing
these optimisations, the node next searches for a route to
nextnextA, leveraging the fact that its routing table also
contains routes to all two hop neighbours. If such a node
is found, the vset-path is repaired by changing the routing
table entry to use the next hop of the alternative route as
nextA. The length of the vset-path does not change in this
case.

For those vset-paths that have the failed node as their nextB ,
the node simply delays the teardown process for (k+1)Th+δt
seconds to allow for failure detection and local repair from
the other side to happen. If that happens, the node aborts
the delayed teardown process, otherwise the teardown leads
to a normal vset-path repair.

2.5.1 Network partitions
Another issue VRR has to deal with and repair is a par-
titioned network. When the network becomes partitioned,
each partition forms a virtual ring of its own. The mech-
anism to join two partitions, merging both separate rings
into one, works using representatives. The representative of
a virtual ring is the node, whose identifier is numerically
closest to zero. A representative obviously only has nodes
with numerically larger identifiers than its own in its vset.
Thus each node can decide locally, whether it is a represen-
tative, or not.

Every active node maintains a path to each representative
it knows of in its routing table. Updates of routes to at
most the two representatives whose identifiers are numer-
ically closest to zero are sent within aforementioned hello
messages. When through this, a node learns about a repre-
sentative which should be in its vset, it sends a setup message
to it. The fact, that the node learned of it through the rout-
ing updates and that each node maintains routes to each
representative assures that the setup message can be routed
to the representative across the partition into the other ring.

The vset-path setup initiated by this causes the two rings
to merge at this point. The nodes from each ring that are
removed from the vset of their former virtual ring neighbours
due to nodes from the other ring taking their places, setup
new vset-paths to their virtual ring neighbours in the merged
virtual ring — thereby completing the merge of both rings.

3. ROUTING ON FLAT LABELS
3.1 Overview
Like VRR, Routing on Flat Labels (ROFL) uses unique,
location independent node identifiers. They, however, are
furthermore self-certifying, i. e. they are the cryptographic
hash of the public key of a public-private key pair, thus
allowing nodes to prove their identity. As an extension to
implement anycast and multicast, ROFL both allows one
node to hold multiple identities as well as multiple nodes to
share an identity.

Again similar to VRR, nodes are logically organised into
rings, ordered by their identifier. There are, however, mul-
tiple rings, nodes are members of an internal ring for intra-
domain routing within an autonomous system (AS) and ex-
ternal rings for inter-domain routing to other ASes.

In each ring, a node has both a logical predecessor and suc-
cessor. A node, however, only maintains pointers — also
called fingers — to its successor. As an optimisation for
better resilience, a node may maintain multiple successor
pointers within a ring, called successor-groups.

The inter-domain routing in the Internet is governed by the
hierarchical provider-subscriber relationships between the



AS 1

AS 2 AS 3

AS 4 AS 5

Figure 4: Sample AS hierarchy.

involved autonomous systems. Figure 4 shows such an ex-
ample AS hierarchy, the edges being connections between
the ASes and their direction denoting the subscriber-pro-
vider relationship.

ROFL uses the notion of an up-hierarchy, which is the up-
stream hierarchy as seen by a router. Figure 5 shows the
resulting up-hierarchy as seen by the routers of AS 4.

AS 1

AS 3

AS 4

Figure 5: Up-hierarchy of AS 4.

Figure 6 shows the internal rings of AS 4, AS 5 and their up-
stream provider AS 3. It also shows sample internal succes-
sor pointers in each AS as well as sample external successor
pointers from and to a host in AS 4. The setup of external
successor pointers will be described in detail in Section 3.3.

As ROFL is designed for use in the Internet, not every
host can reasonably be a node actively participating in the
routing. ROFL thus distinguishes between three types of
nodes: routers which do the actual ROFL routing, stable
hosts which are hosts that are permanently connected to
the network and ephemeral hosts which are hosts that are
only intermittently connected or mobile.

Hosts connect to the ROFL network via routers. The router
a host connects to is called the hosting router of the host
and the host is called a resident host at this router.

Thus a typical site network as used today would be trans-
lated as follows into the ROFL scheme: The servers and
some always online workstations would be stable hosts, work-
stations that only run during office-hours and laptops would
be ephemeral hosts, routers that route between LAN seg-
ments and the site backbone would be hosting routers of
the hosts in the connected LANs, and finally the border
routers would also be border routers.

3.2 Routing
Routing in ROFL also provides a DHT, packets are routed
to the node whose identifier is numerically closest and lower
or equal to the identifier of the destination.

A routing path in ROFL is called a source route, it is a
hop-by-hop list of router identifiers along the physical path.

To detect and identify link — and thus source route — fail-
ures, ROFL requires a routing protocol on the link level that
maintains a network map, like OSPF [12] does. Intra-domain
that routing protocol finds and maintains routes between
hosting routers, inter-domain it maintains routes between
border routers of interconnected ASes.

As mentioned above, each node has a predecessor and suc-
cessor and it maintains successor pointers to nodes in each
ring it participates in. However, ephemeral hosts are an ex-
ception to that. They are not part of any ring itself, they
are neither predecessor nor successor to another node. They
rather are ”leaf nodes” to their internal ring, as illustrated
in Figure 6. The node that would be — in terms of identifier
order — the predecessor of the ephemeral host maintains a
source route to the ephemeral host. Due to the DHT nature
of the routing, any packet destined for the ephemeral host
will reach the predecessor node which then can route it to
the ephemeral host.

A node has successor pointers to an external ring, only when
the successor in the external ring would be the direct succes-
sor of the node if both rings were merged, i. e. the identifier
of the successor in the external ring is numerically closer to
the node than that of its successor in the internal ring.

To reduce stretch, nodes additionally have proximity-based
fingers to nodes that are close in the physical network topol-
ogy. As another optimisation, routers have a so called pointer
cache where they cache source routes that run across them.
They, however, only cache pointers to a node, if they either
are the hosting router of a predecessor of that node or if they
lie on the shortest path to such a router. This restriction
is required to allow for efficient cache invalidation on host
failure, as later discussed in Section 3.4.

The forwarding decision of a router in ROFL works like this:
The router first looks for the best match among its resident
virtual nodes1. If it finds a direct match, it delivers the
packet to that node, otherwise it looks for the best match in
its pointer cache and forwards the packet to the better —
i. e. closer to the destination — of these two matches.

ROFL maintains what it calls the isolation property. This
property means, that a packet routed between two ASes
will never travel higher in the hierarchy than through their
least-common ancestor. For example, in the sample hier-
archy illustrated in Figure 5, the isolation property would
guarantee that a packet routed from AS 5 to AS 4 would
never travel on a higher hierarchy level than through AS 3.
Border routers that optionally use their pointer cache for
inter-domain routing too, only use them if the destination

1See Section 3.3. For now, it is sufficient to read that as
resident hosts, the only important part is that this lookup
happens local.



AS 4

Router

Stable Host

Ephemeral Host

Internal F
inger

AS 5

AS 3

E
xt

er
n
al

F
in

ge
r

Figure 6: Internal and external rings.

host is at a higher level in the hierarchy. This is so to assure
that the isolation property is not violated when for exam-
ple the shorter route in the pointer cache leads to a path
through a higher level AS. The decision of whether a host
is at a higher or lower level of the hierarchy is facilitated by
matching the host against a bloom filter [2] that contains
the — known — (sub)set of hosts that are at a lower level
of the hierarchy.

3.3 Node join
A host joins the ROFL network by contacting its hosting
router. It locates it the same way hosts locate their default
gateway in TCP/IP, i. e. by DHCP and other autoconfigu-
ration means or static configuration. The host first proves
its identity to the router using its self-certifying identifier. If
that succeeds and the host is authorised to join the network,
the router initiates the join process. This works by first cre-
ating a virtual node on behalf of the joining host. Next,
the router finds the predecessor of the host in the internal
ring, i. e. the node whose identifier is numerically closest,
but lower than that of the joining node. Now the router
inserts the virtual node into the ring by setting its successor
to the current successor of the predecessor and then setting
the successor of the predecessor to the virtual node.

The router then joins the virtual node into the external rings
in its up-hierarchy. Therefore it selects — based on even-
tual policy requirements of its AS and the joining host — a
set of paths along its up-hierarchy on which to potentially
join external rings at each level. For each of these paths,
the router forwards the join request including the path to a
border router of the next hop AS on the path.

A border router receiving such an external join request, ini-

tiates the external join process for its ring. During this, it
first finds the virtual node within the subtree of the hierar-
chy rooted at the current level that would be the predecessor
of the joining virtual node. It then gathers both the sets of
all — internal and external — successors of that ”would-
be predecessor” and of the joining virtual node. Both sets
are also limited to those virtual nodes that are within the
subtree of the hierarchy rooted at the current level.

Next the virtual nodes with the lowest identifier — i. e. the
closest successors — of each set are compared. If that of the
”would-be predecessor” would be a better successor than
that of the joining virtual node, that successor is added as
an additional external successor to the joining virtual node.
Similarly, if the joining virtual node itself would be a better
successor to the ”would-be predecessor” than the best of its
current successors, it is added as an external successor to
the ”would-be predecessor”.

This scheme makes sure that an external successor at a given
level of the up-hierarchy is always closer than any other suc-
cessor — internal and external — at a lower level. An ex-
ternal successor at a higher level that would be farther away
than an external successor at a lower level, could be reached
by routing to that lower level external successor anyway and
not doing so, i. e. not routing through the lowest possible
AS in the up-hierarchy could violate the isolation property.
Thus this scheme is necessary to ensure that this property
is maintained.

Finally, unless being itself at the top level of the up-hierarchy,
the router passes the external join request on to a border
router of the next higher AS in the path supplied with the
request. Thus the external join process recursively continues



through all levels of the up-hierarchy on the path specified
by the hosting router of the joining host.

To bootstrap itself, a router after startup first creates a de-
fault virtual node with its own identifier. The router then
joins this node into the internal ring by flooding a message
announcing its identifier. Upon reception of this message,
its predecessor links itself to the joining router and its suc-
cessor responds to the message with his identifier, so that
the joining node can link to it.

3.4 Failure detection and repair
The aim of ROFL is to ensure reachability of any two nodes
between which a working network path exists and to ensure
that for each of its pointers, a node detects the failure of
the path to the destination or of the destination itself and
consequently deletes that pointer.

Host and router failures are detected through session time-
outs, link failures are detected by the underlying routing
protocol on the link level.

When a host fails not only the hosting router is affected, but
also any other router that has pointers to the failed node.
Aside from the hosting routers that have virtual nodes whose
successor pointers point to the failed host and thus have
to be updated, in theory this could be any router because
of the pointer cache. But due to the restriction of what a
router may cache (cf. Section 3.2), the set of affected routers
whose pointer cache may have to be invalidated is limited.
The nature of that restriction, i. e. the limitation to routers
that are the hosting router of the host’s predecessor and
those that lie on the shortest path to the former, includes
the routers affected in any case in the former group, and
those on the path to these in the latter. Therefore, the
hosting router can easily send a source-routed flood that
only reaches this set of affected routers, a so called directed
flood, to inform them about the failure.

To facilitate efficient failover in case of router failures, routers
agree upon a sorted list of routers to fail over to. When a
router fails, the next alive router on that list is the failover
router to be used instead.

Each node that was resident at the failed router rejoins
the network using the failover router as soon as it detects
the failure. To provide higher resilience, hosts may instead
join the ROFL network using multiple hosting routers right
away, so that they stay connected when a router fails.

Besides the resident hosts, hosting routers of hosts that have
successor pointers to the virtual nodes at the failed router
are also affected. Due to the deterministic failover router se-
lection, these routers can easily adjust the affected successor
pointers to the failover router.

When a link fails without creating a partition of the internal
ring, all a router needs to do is to invalidate pointer cache
entries whose paths contain the failed link. The network
map maintained by the underlying routing protocol on the
link level takes care of discovering alternative paths.

However, when a partition of the internal ring occurs, first,

the separate partitions must form consistent rings of their
own and then, as soon as the physical network link between
the partitions is restored, they must again merge into a sin-
gle ring.

The first goal is achieved by any routers detecting pointers
that became invalid due to the partition repairing them lo-
cally. This works by pointing an invalid successor pointer to
the resident virtual node with the numerically closest, but
higher identifier, i. e. the next available identifier.

This basically ”closes the gaps” the missing nodes from the
other partition left behind.

Merging ROFL rings works similar to merging in VRR as
described in Section 2.5.1. Just like the representative in
VRR, routers in ROFL determine the zero-ID, which is the
smallest, i. e. closest to zero, identifier they know. They
distribute the zero-ID along with link state advertisements
of the underlying routing protocol on the link level. When
network connectivity between the partitions is restored and
thus the node in one partition that should be the predeces-
sor of the zero-ID in the other partition learns about the
presence of the zero-ID, it will link its successor pointer to
it. This triggers the merge process, wherein each node in
turn repairs its successor resulting in a merged ring.

To make sure that the internal rings at each level of the
hierarchy merge consistently, routers also maintain a route
to the zero-ID of the hierarchy levels below them.

3.5 Multi-homing and peering
Besides the simple provider-subscriber relationship assumed
in the description of ROFL so far, there exist more complex
constellations.

One of the simpler ones is a site subscribing to more than
one provider without being multi-homed. To achieve this
setup, a site simply joins different identifiers to the different
providers.

The other simple case is that of a site being multi-homed to
the same upstream AS — being it multiple connections to
the same provider or connections to multiple providers that
are no AS on their own and themselves subscribe to the same
provider. This setup is simply a matter of applying policy
to link selection towards the upstream AS.

The — from an availability standpoint — most desirable
setup is multi-homing to different upstream ASes, as illus-
trated in Figure 7. AS 4 is multi-homed to both AS 2 and
AS 3 and thus a single failure of either AS 2 or AS 3 will
not affect its connectivity.

In ROFL this — in the current Internet more involved —
setup also works quite simple. The up-hierarchy of the
multi-homed AS contains all its upstream providers. Fig-
ure 8 shows the up-hierarchy of the multi-homed AS 4 from
this example.

As long as no policy requirements prevent this, the join pro-
cess (cf. Section 3.3) selects all up-hierarchy paths to initiate
external join processes. Therefore, routers at a multi-homed



AS 1

AS 2 AS 3

AS 4 AS 5

Figure 7: Multi-homing to two ASes.

AS 1

AS 2 AS 3

AS 4

Figure 8: Up-hierarchy of AS 4, multi-homed case.

site will automatically join external rings of all its upstream
providers, if applicable.

Usage of a link merely as backup link is achieved by accord-
ing policies for the up-hierarchy path selection during the
join process (cf. Section 3.3) that result in paths utilising
the backup link to never be selected as long as the main link
is up.

A preliminary extension to ROFL to provide better support
for routing policies and traffic engineering adds optional suf-
fixes to identifiers. A hosting routers of a multi-homed site
appends a different suffix to the identifier in an external
join request for each provider. Other hosts sending packets
to hosts at the mulithomed site by default choose a random
suffix which results in load balancing among the connections
of the multi-homed site. Other hosts and routers, however,
may as well choose specific suffixes to control which path
the packets are routed along.

AS 1

AS 2 AS 3

AS 4 AS 5

Figure 9: Peering between two ASes.

Peering of two ASes, in the sense of routing packets destined
to each others AS over a direct peering link, as depicted
between AS 4 and AS 5 in Figure 9, can be handled two
different ways in ROFL.

The first way is to assume a virtual AS for each peering
link as shown in Figure 10. The virtual AS is a provider to
all peers and a subscriber to each peer’s providers. Again,
the virtual AS is just assumed, it only exists in the form
of additional rules in the join process. A virtual node joins
the virtual AS in such a way that it will join the other
peer’s internal ring, but not that of the other peer’s up-
stream provider. In the example in Figure 10, AS 4 may
join the internal ring of AS 5 and vice versa, but neither
may AS 4 join the internal ring of AS 3 nor may AS 5 join
the internal ring of AS 2.

AS 1

AS 2 AS 3

Virtual AS

AS 4 AS 5

Figure 10: Peering using virtual AS.

The second way is to use bloom filters [2] to ensure that
only packets destined to hosts resident at the peering AS
are routed across the peering link. Each peer checks the
destination identifier of a packet against the bloom filter for
the other peer’s hosts, before routing it to that peer. If
it does route the packet, it marks it as being sent over a
peering link. This is necessary to deal with false positives
the bloom filter may match. These are sent back over the
peering link by the other peer and will then — due to the
mark — not be routed across the peering link again, but
instead some other path.

The virtual AS approach has the advantage of not needing
such a backtracking mechanism, the bloom filter approach,
however, comes without the additional join overhead of the
former.

3.6 Anycast and multicast
Anycast builds upon the ROFL extension used for policy
routing and traffic engineering in a multi-homing setup de-
scribed in Section 3.5. Servers wishing to be reached via an
anycast identifier join the ROFL network using the identifier
of the desired anycast group and a suffix. Routers forward
packets destined to the identifier of the anycast group inde-
pendent of the suffix. Thus these packets get routed to the
closest — in the ROFL topology — server of the anycast
group.

Multicast in turn builds upon anycast to facilitate joining a



multicast group. The host that wants to join sends a request
message using anycast to the multicast group identifier, con-
sequently reaching a close member of the multicast group.
When this message passes through a router, the router sets
up pointers to the multicast group in the direction the re-
quest message came from. Thus, when it reaches a multicast
group member, a path for the multicast group identifier from
that member to the joining host exists, i. e. the host has suc-
cessfully joined the multicast group. Multicast packets sent
to a multicast group are forwarded to all links of a router
for which pointers to that multicast group identifier exist,
except for the link the packet arrived at.

4. CONCLUSIONS
Both discussed routing protocols constitute a novel approach
to routing. They leverage the advantages of Distributed
Hash Table techniques for efficient, scalable routing that in
addition to point-to-point routing provides DHT functional-
ity. As another notable benefit, they do away with the con-
straints of hierarchical, location dependent addresses serving
as both identifiers and locators. They do so by being able
to route based on true, flat, location independent identifiers
alone, without the need for any lookup or mapping mecha-
nism between identifiers and locators.

VRR is designed as an efficient mesh routing protocol for
wireless ad hoc networks. The design shows various opti-
misations for this scenario. The mixture of paths to both
virtual and physical neighbours and even to two-hop physi-
cal neighbours along with the different small optimisations
to take shortcuts in the routing help to reduce stretch. The
symmetric failure detection, the short hello message interval
and the optimisation of local path repair helps keeping the
packet delivery rate high despite frequent failures of nodes.
Low per-packet overhead and never flooding the network
helps to preserve scarce bandwidth in wireless networks thus
helping scalability.

According to the simulation and experimentation results
presented in the original paper [3], VRR manages to re-
alise these design properties and performs at least as good
as or better than any of the mesh routing protocols it was
compared to in various settings. Stretch is less than 1.2 for
50 nodes and slightly greater than 1.4 for 200 nodes.

ROFL is designed as a proof of concept, intra- and inter-
domain routing protocol for use on the Internet, offering
anycast as well as multicast, and — due to the location in-
dependent identifiers — host mobility. While routing on a
flat hierarchy itself, it does take into account provider hier-
archies including peering, multi-homing and routing policy
requirements. It achieves this by combining and modifying
ideas from different DHT algorithms and VRR, yet leaving
implementation detail open and up to further experimenta-
tion in some parts. The simulation results presented in the
original paper [4] show that acceptable performance is only
reached by using sufficiently many proximity-based fingers
and large pointer caches. Doubling the number of fingers to
680 and a pointer cache of 20 million entries is required to
reduce average stretch from 2.5 to 1.33.

On the one hand this shows that ROFL merely is a proof
of concept, on the other hand it shows that performance

is surprisingly good for a first attempt at what before was
thought of as being impossible — Internet routing without
hierarchy.

While different in scope and objective, both routing proto-
cols demonstrate that using Distributed Hash Table tech-
niques as used in overlay networks for the routing in the
underlay network is a worthwhile area of further research.

5. REFERENCES
[1] C. Adjih, E. Baccelli, T. H. Clausen, P. Jacquet, and

G. Rodolakis. Fish eye OLSR scaling properties. IEEE
Journal of Communication and Networks (JCN),
Special Issue on Mobile Ad Hoc Wireless Networks,
Dec. 2004.

[2] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Commun. ACM, 13(7):422–426,
1970.

[3] M. Caesar, M. Castro, E. B. Nightingale, G. O’Shea,
and A. Rowstron. Virtual ring routing: network
routing inspired by DHTs. In SIGCOMM ’06:
Proceedings of the 2006 conference on Applications,
technologies, architectures, and protocols for computer
communications, pages 351–362, New York, NY, USA,
2006. ACM Press.

[4] M. Caesar, T. Condie, J. Kannan,
K. Lakshminarayanan, and I. Stoica. ROFL: routing
on flat labels. In SIGCOMM ’06: Proceedings of the
2006 conference on Applications, technologies,
architectures, and protocols for computer
communications, pages 363–374, New York, NY, USA,
2006. ACM Press.

[5] V. Fuller. Scaling of internet routing and addressing:
past view, present reality, and possible futures. IEPG
Meeeting, Nov. 2006.
http://www.iepg.org/november2006/2-routing-
scaling.pdf.

[6] V. Fuller and T. Li. Classless Inter-domain Routing
(CIDR): The internet address assignment and
aggregation plan. RFC 4632 (Best Current Practice),
Aug. 2006.

[7] P. Ganesan, K. Gummadi, and H. Garcia-Molina.
Canon in g major: Designing dhts with hierarchical
structure. In ICDCS ’04: Proceedings of the 24th
International Conference on Distributed Computing
Systems (ICDCS’04), pages 263–272, Washington,
DC, USA, 2004. IEEE Computer Society.

[8] R. Hinden, S. Deering, and E. Nordmark. IPv6 global
unicast address format. RFC 3587 (Informational),
Aug. 2003.

[9] R. Hinden, M. O’Dell, and S. Deering. An IPv6
aggregatable global unicast address format. RFC 2374
(Historic), July 1998. Obsoleted by RFC 3587.

[10] G. Huston. Commentary on inter-domain routing in
the internet. RFC 3221 (Informational), Dec. 2001.

[11] G. Huston. The CIDR report, Dec. 2006.
http://www.cidr-report.org/.



[12] J. Moy. OSPF version 2. RFC 2328 (Standard), Apr.
1998.

[13] J. Saltzer. On the naming and binding of network
destinations. RFC 1498 (Informational), Aug. 1993.

[14] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger,
M. F. Kaashoek, F. Dabek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup protocol for
internet applications. IEEE/ACM Trans. Netw.,
11(1):17–32, 2003.


