

Overlay techniques in the underlay 1st Conference Seminar Massively Distributed Systems Winter Term 2006/2007

Elmar Hoffmann <elho@elho.net>

RWTH Aachen University

February 16, 2007

Virtual Ring Routing

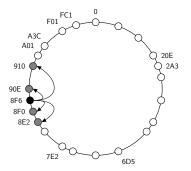
Routing on Flat Labels

The End

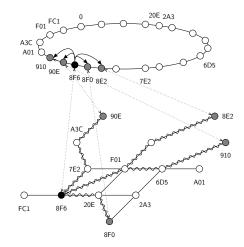
Motivation

- Addresses being both identifiers and locators is a bad idea
 - what you want vs. where to find it
 - mobility (Laptops, ...)
 - re-homing
 - multi-homing
- Limited scalability of existing routing algorithms
 - Internet routing
 depends on hierarchy to scale
 >200000
 >200 000 routes
 (fast) router memory is limited
 Mesh routing
 flooding
 location based addresses
 - 1985 1990 1995 2000 2005 2010

Virtual Ring Routing Concept Routing Failure detection and repair


Routing on Flat Labels

The End


VRR: Concept

- Node identifiers
 - random unsigned integers
 - location independent
- Nodes are arranged into virtual ring
- Nodes maintain
 - Virtual neighbour set (vset)
 - Physical neighbour set (*pset*)
 - one-hop neighbours
 - two-hop neighbours (as an optimisation)

VRR: The big picture

VRR: Routing

- Provides DHT functionality
- Routing table
 - vset-paths to vset members
 - vset-paths that run across the node
 - physical neighbour paths to pset members
- Routing table entry
 - both endpoints
 - next hop towards both endpoints
 - next next hop towards originating endpoint (as an optimisation)
 - path id (doubling as preference)

Failure detection and repair

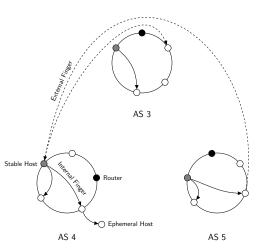
• Symmetric failure detection

- hello messages
- physical neighbour state
- vset-path repair
 - teardown and setup
- local repair
 - constant cost

Virtual Ring Routing

Routing on Flat Labels Concept Routing

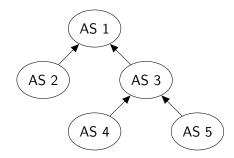
The End


ROFL: Concept

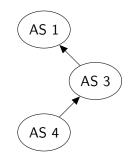
- Node identifiers
 - location independent
 - self-certifying (public key cryptography)
- Node types
 - routers
 - stable hosts
 - ephemeral hosts

ROFL: The big picture

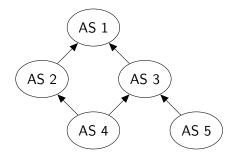
- Nodes are arranged into virtual rings
 - internal ring intra-domain routing
 - external rings inter-domain routing
- Nodes have successor pointer(s) into rings



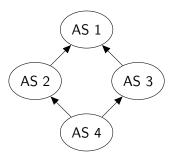
- Provides DHT functionality
- Routers maintain virtual node on behalf of the hosts
- Routers additionally have pointer cache



- Node potentially joins ring at each level of its up-hierarchy
- *isolation property* assures routing through least-common ancestor.



- Node potentially joins ring at each level of its up-hierarchy
- *isolation property* assures routing through least-common ancestor.



- Node potentially joins ring at each level of its up-hierarchy
- *isolation property* assures routing through least-common ancestor.

- Node potentially joins ring at each level of its up-hierarchy
- *isolation property* assures routing through least-common ancestor.

Virtual Ring Routing

Routing on Flat Labels

The End

Summary Further Reading Questions

Summary

• Virtual Ring Routing

- efficient mesh routing protocol
 - optimisations to take shortcuts reduce stretch
 - symmetric failure detection and local repair make it robust
 - Iow per-packet overhead and lack of flooding make it scalable
- Routing on Flat Labels
 - intra- and inter-domain routing protocol for the Internet
 - anycast, multicast and mobility
 - peering, multi-homing and routing policy
 - proof of concept
 - needs large (>20M entries) pointer cache to perform acceptably
 - demonstrates feasability of flat Internet routing

Further Reading

- M. Caesar, M. Castro, E. B. Nightingale, G. O'Shea, and A. Rowstron. Virtual ring routing: network routing inspired by DHTs.
 In SIGCOMM '06: Proceedings of the 2006 conference on Applications, technologies, architectures, and protocols for computer communications, pages 351–362, New York, NY, USA, 2006. ACM Press.
- M. Caesar, T. Condie, J. Kannan, K. Lakshminarayanan, and I. Stoica. ROFL: routing on flat labels.
 In SIGCOMM '06: Proceedings of the 2006 conference on Applications, technologies, architectures, and protocols for computer communications, pages 363–374, New York, NY, USA, 2006. ACM Press.
- Overlay techniques in the underlay

http://www.elho.net/pub/

Questions?

